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Wavefunction scaling in a quasi-periodic potential 

D J Thouless and Q Niu 
Department of Physics FM-15, University of Washington, Seattle, WA 98195, USA 

Received 5 November 1982 

Abstract. The nature of wavefunctions in a particular system with two incommensurate 
periods is discussed. It is shown that the wavefunction can be approximated by a product 
of functions corresponding to the different quasiperiods, and so these approximate periods 
serve as discrete length scales for the wavefunction. In this way it can be understood how 
localised or extended wavefunctions, and also two different types of wavefunctions corres- 
ponding to a singular continuous spectrum, can occur. Under certain critical conditions 
self-similar wavefunctions are found. 

1. Introduction 

Various studies have been made of one-dimensional wave equations in nearly periodic 
potentials. It was, for example, shown by Harper (1955) and Zil’berman (1956) that 
such an equation occurs for electrons in a two-dimensional periodic potential perturbed 
by a weak magnetic field if the number of flux quanta per unit cell is irrational, and 
the same equation occurs when the magnetic field is strong and the periodic potential 
is weak (Rauh er al 1974). &bel (1964,1979) has examined such equations and 
shown that the integrated density of states has the structure of a devil’s staircase, and 
that the wavefunctions may be either localised or extended. Aubry and AndrC (1980) 
have studied the equation of the form 

This has an important duality property, since the equation for its Fourier coefficients 
has exactly the same form, with V and V’ interchanged, and with v replaced by the 
Bloch wavenumber K. This allowed them to deduce that for V’> V there is an 
exponential decay of solutions with a decay length equal to l / l n (  VI/ V )  lattice spacings. 
For the generic case of cp irrational all eigenstates seem to be localised with this 
localisation length. 

The self-dual case V = V’ is of particular interest, since it gives a sort of critical 
point at the boundary between localised and extended states. This corresponds to 
the problem of electrons in a magnetic field and a two-dimensional potential with 
square symmetry, and it was pointed out by Hofstadter (1976) that the spectrum in 
this case is concentrated on a non-denumerable set of measure zero. This spectrum 
cannot be absolutely continuous if the measure is zero, and it seems unlikely that it 
is a point spectrum, so the spectrum is probably singular continuous. Since it is known 
that a point spectrum corresponds to localised states (Kunz and Souillard 1980) and 
extended states are usually associated with an absolutely continuous spectrum, it is 

@ 1983 The Institute of Physics 1911 



1912 D J Thouless and Q Niu 

of considerable interest to know what types of wavefunctions are associated with the 
intermediate case of a singular continuous spectrum. 

Another case of a singular continuous spectrum has been demonstrated by Avron 
and Simon (1982). For V '>  V the states are localised (point spectrum) for almost 
all irrational values of cp, and the states are of course extended Bloch waves, with an 
absolutely continuous spectrum, for rational cp. In the case that cp is a Liouville number 
(which is in some sense an irrational number unusually well approximated by rationals) 
the spectrum is singular continuous. 

It is the purpose of this paper to give a detailed description of the wavefunctions 
for these problems. In § 2 it is shown how successive rational approximants of cp lead 
to a scaling theory of the problem. In § 3 the scaling theory is applied to the various 
cases discussed in this introduction. In § 4 some comparison is made with numerical 
calculations of the wavefunctions. 

2. Scaling theory of the wavefunctions 

We follow Azbel (1964) in writing the parameter cp in its continued fraction form 

We take the Ni as positive or negative integers whose magnitude is 2 or more. The 
approximate periods of the system are then NI, (N1N2 + 11, I N I N ~ N ~  +NI +N,l, etc. 
For simplicity in the discussion of the scaling theory we consider the case in which 
all the Ni are fairly large, but the numerical results given in § 4 suggest that this is 
not an essential restriction. 

The scaling theory is developed by considering blocks whose size is equal to, or 
close to, the approximate periods of the system. Initially we consider blocks of size 
NI (with the occasional block of size N I  f 1 for compatibility with the next period), 
and then we consider larger blocks made up of IN*( of the smaller blocks, so that 
there are lNlN2 + 11 sites in these larger blocks, and so on. This is essentially the 
method used by Azbel (1964) and Sokoloff (1981b) in their discussion of the energy 
gap structure. 

As the first step in this procedure we consider blocks of size NI. We consider a 
particular energy E or a narrow energy range close to E, and for positive E we make 
the division between blocks where ncp + u/27r is half an odd integer, while for negative 
E the division is made where ncp + u/27r is an integer, so that the division between 
blocks is made as far as possible from the sites close in energy to E. We have to 
consider different values of VI/ V and of E. 

First we consider the case in which V'/V is rather large. If JEJ is greater than 
2(V + V')  there is of course no state with energy close to E. For (El less than 2( V + V ' )  
each block will have one or two sites close in energy to E. Since the Green function 
will be dominated by the eigenfunctions of each block lying close to E it is possible 
to eliminate all but the sites closest in energy to E. A convenient way of doing this, 
described in the appendix, is to use Feenberg (1948) perturbation theory, which results 
in the addition of a self-energy due to the eliminated sections, for each site which is 
kept, and the replacement of the coupling between sites by an effective coupling. 
Provided the eliminated sites differ in energy from E by an amount large compared 
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with V the self-energy corrections are small and the effective coupling is insensitive 
to energy; the condition for this is 

V <  vi = ( ~ T / N ~ ) ( ~ V ” - E ’ ) ~ ’ ~ .  (2.2) 

The effective coupling between two sites a distance N1 apart is approximately 
n + N 1 - l  

VI = VN1 n [E - 2 V cos(2~ncp + v ) ] - l =  V( V/ V’)N1-l. (2.3) 
m = n + l  

If the energy is close to 

E, = *2 V’ cos m p ,  (2.4) 

where r is some integer less than 1/2Q there will be some blocks that contain two 
sites with energy close to E,, separated by r sites. The effective coupling between 
such sites within the block is of order VrV’l-r, while the coupling between sites in 
different blocks is at most of order VN1-rV’l+r-N1 . As a result an energy gap whose 
width is of order VrVrl-‘ opens up around each value of E,. 

Now we can consider the next level of the scaling theory, in which the new block 
size is IN1N2+ 11. The energies of the IN2[ remaining sites within the block are spread 
more or less uniformly over a range of order V’ as given by equation (2.2), while the 
coupling between them is of order 

(2 .5)  

The condition for the scaling at this stage to proceed in the same way as at the previous 
stage is 

(2.6) 

generally this will be true if (2.5) is satisfied unless N z  is very large. For this new 
scale a new set of energy gaps will be introduced close to the energies given by 
equation (2.4) for larger values of r, because close to these energies there can be two 
sites with the same energies in the same blocks. The procedure is slightly different 
close to the energy gaps E, for r < N1/2, since there the existence of two sites close 
in energy leads to an increase in the density of states, and an increase in V1, but it 
is still true that the ratio of VI to Vi is much less than the ratio of V to V’ in that region. 

The rescaling can be carried out even when the condition (2.2) is not satisfied. 
Provided V <  V’ there is a region around the boundary of each block for which 
IE - 2 V’ cos(27rncp + v)l > 2 V, and in this region the solution of the difference equation 
(1.1) increases or decreases exponentially with distance. Within the block there are 
one or two regions in which IE - 2 V’ cos(2mp + v) l>  2 V, and there the solution 
oscillates. The quantity which is needed for the rescaling procedure is the end-to-end 
component of the Green function, and this is dominated by the eigenstate of the block 
lying closest to E. The most important contributions come from blocks which are 
close to resonance, and a single resonance approximation is adequate for the blocks 
that are far from resonance, so it is still possible to replace a block by a single site 
with the energy of this eigenvalue. The effective coupling of a block to its neighbour 
is given by V times the value of the eigenfunction at the boundary site. The eigenstates 
are fairly insensitive to the boundary conditions applied in the regions of exponential 
growth, and it is probably most convenient to define the eigenfunctions by isolating 
the block from its two neighbours. The eigenfunctions can be calculated within a 
block by an appropriate modification of the WKB method (Sokoloff 1981a). 

VI V” V’l-NI, 

VI< Vh = ( 2 ~ / l N 1 N z +  11)(4V’2-E2)1’2~ V;/N2; 
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The parameters of the rescaled theory can be estimated by considering the case 
cp = l / N 1 .  In this case the original problem is periodic, and the rescaled problem 
involves a set of identical blocks. It can easily be shown that the characteristic equation 
for the original problem involves the phase v and the Bloch wavenumber N l K  only 
in the E-independent combination 

2 V” COS N1K + 2 VfN1 cos N1 v. (2.7) 

The ratio of the v-dependent term to the K-dependent term gives the ratio of Vi to 
V1, so we have 

v;/ v1= (VI/ V)NI, (2.8) 

which is just the same as is given by equations (2.2) and (2.3). Equation (2.2) still 
gives an upper limit for Vi,  but it is no longer a good approximation, because the 
band gaps may now occupy an appreciable proportion of the available range of 
energies. 

Equation (2.8) shows that in the limit V’ = V the rescaled problem is similar to 
the original problem, so this case gives a critical fixed point of the scaling procedure. 

3. Results of the scaling theory 

3.1. Localised states 

Equation (2.8) shows that if V’/V is greater than unity it scales to larger values. 
Unless Ni increases very rapidly with i there will be some value j for which 

Vi < VI+1, all i 2, j ,  (3.1) 

which is the condition analogous to (2.2) for the eigenstates to be localised on a single 
block of size I I i = l  Ni.  Beyond this scale states are localised, and fall off exponentially 
with an exponent In V/V’. The state may spread over many sites within the block of 
size I I { = ,  Ni ,  although the spread will be over a small fraction of the total number of 
sites in the block. 

3.2. Liouville numbers 

Avron and Simon (1982), by modifying a similar argument given by Gordon (1976) 
for the Schrodinger equation, have shown that if cp is a Liouville number then there 
are no localised eigenstates even for large Vf/V. For the Liouville numbers the NI 
increase so rapidly that the condition (3.1) is never satisfied. Since Vi+l is of order 
V{/N,+l ,  this will occur if 

N I T i  >>(v’/v)“;=”J.  (3.2) 

It is easy to show that eigenstates cannot be localised under these conditions. On 
each length scale the difference in energy between one block and its neighbour is so 
small that the very weak coupling between the blocks is sufficiently strong to cause 
the eigenstates to spread out as a standing wave over a number of blocks n,, which 
is a small fraction of the total number of blocks N, in an approximate period; except 
near the band edges nJN, is of order V;-l. Thus the total number of sites over 
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which the main part of the wavefunction is spread is given by the unbounded product 
IIini. 

The nature of the local density of states can be examined by a similar argument. 
We consider in succession systems with periods N1, IN1N2+ 11, and calculate the local 
density of states for n = 0 at some fixed value of the phase v. For the system with 
period NI the spectrum consists of N1 narrow bands. Since V’/ V is large there will 
be n l  of these bands that contribute an appreciable weight to the density of states at 
n = 0, since these are bands whose wavefunctions oscillate near n = 0. The remainder 
of the bands have weights that decrease by successive factors of order (VlV’)’. For 
the system of period IN1N2 + 11 each band splits up into IN2/ very narrow components. 
A small proportion nz / lN2J  of the components will have relatively large weights, and 
these have energies that lie within the range of the bands at the previous stage. The 
other components have weights that decrease by factors of order (V/ V’)2N1, and these 
have energies that are spread more or less uniformly through the gaps of the previous 
stage. This process by which energy bands break down into more and more components 
filling a larger proportion of the total range of energies leads to a singular continuous 
spectral density. It is not a point spectrum because the weight associated with any 
particular band is no more than IIin;’, and it is not absolutely continuous, because 
at each stage in this procedure the maximum value of the spectral density, in any 
interval in which it is non-zero, increases by a factor of order V, , - l /n jV,  = V//  V,, which 
is a large number, so the spectral density is unbounded everywhere. The support of 
this spectrum has a measure 4(V’-  VI (den Nijs, Nightingale and Thouless, unpub- 
lished). 

3.3. The critical point 

The point V = V’ is a critical point, as a lot of previous work has made clear. In 
particular Aubry and AndrC (1980) showed that the localisation length becomes 
infinite everywhere in the spectrum as V approaches V ’  from below. It was also 
shown by Hofstadter (1976) that the support of the spectrum has zero measure for 
irrational q in this limit, and so the spectrum is not absolutely continuous. 

Equation (2.8) shows that Vj/ Vi is unity for all j ,  so the effective coupling constant 
is the same on all length scales. The form of the wavefunction for each length scale 
does depend also on the value of Nj and on the value of the energy. For example, 
the states whose energies are close to a sub-band edge on a certain length scale will 
have wavefunctions which oscillate only over a very few blocks, and which fall off 
exponentially over the rest of the blocks in an approximate period, while states whose 
energies are near the centre of the sub-band oscillate almost everywhere. The 
wavefunction is a product of factors for each length scale, where the factor depends 
on Nj  and the position of E within the sub-band corresponding to the next shorter 
length scale. As a result, at each stage in the rescaling the strength corresponding to 
a particular energy band gets spread over a number of sites whose ratio to the number 
at the previous stage depends on Ni and the position of the band, but does not depend 
explicitly on j .  The spectral density corresponding to each band therefore tends to 
zero, and so the spectrum is not a point spectrum. Since it is not absolutely continuous 
it should be singular continuous. 

If all the Nj  are identical, as they are for solutions of the equation 

f q Z + N q  = 1, (3.3) 
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and if the energy is in the same position relative to each set of sub-bands, as it is €or 
E = 0 or for the highest or lowest state in the spectrum, then the wavefunction is a 
product of similar factors 

(3.4) 

(3.5) 

and f is a Bloch function with period unity, with f ( 0 )  = 1. Hofstadter (1976) has 
illustrated a wavefunction with this type of structure, but he chose a case where the 
N, were different. 

An expression like (3.4) is neither exponentially localised nor an extended state 
of the usual sort. There is a sense in which the wavefunction falls off like a power of 
distance, since 

and f is close to unity for n <<pi. Therefore, the number of terms contributing 
significantly to this sum is of order In n/ln N, and so we have 

(3.7) 

where is the geometric mean of f. However, this is a very rough approximation, 
and the function is quasi-periodic, and returns close to its maximum value at some 
distant points. 

In f / ln  N lcnl/cO=lnl , 

3.4. Extended states 

For V > V’ it is no longer possible to adopt the same scaling procedure, since the 
effective coupling becomes strong on large length scales, and it is no longer possible 
to argue that only a few eigenstates contribute, or that boundary conditions are 
unimportant. We know, however, that the density of states is the same as that for 
the dual problem with V and V’ interchanged (Aubry and Andre 1980). We can 
therefore calculate eigenstates for this problem by taking the Fourier transform of 
eigenstates of the dual problem. From the solution of the dual problem 

(3.8) V’d,-1+2V cos(2~mcp +K)d,  + V’d,+l =Ed,, 

we can construct solutions of equation (1.1) of the form 

c,, = ( 2 ~ ) - ’  1 d ,  exp(2mcpmn +iKn +ivm). 
m 

(3.9) 

Since the d, are exponentially localised and there exist n for which frac(cpn) is 
arbitrarily small, this has the character of a running wave. 

4. Numerical calculations 

As a check on the arguments presented in this paper, a number of eigenfunctions 
were computed for rational values of cp, both for V #  V’ and for the critical case 
V = V‘. In general the expected qualitative features were observed, even when the 
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numbers Ni in the continued fraction were quite small. In order to do a more 
quantitative test we made a more detailed study of some cases with V = V ’  where 
the self-similarity of the wavefunction was expected to be apparent. 

One case that is expected to be self-similar is a wavefunction corresponding to an 
extrema1 eigenvalue for a value of cp for which all the Ni in the continued fraction 
expansion are identical. In figure 1 is shown the highest eigenvalue in the case 

12 1 1  1 1 1  1 
29 2+ 2+ 2+ 2+ 2 2+5/12’ v=-=-----= 

which we have denoted by f12/29(m). 

i 
I 
1 

1 

10 0 2 4 6 8 
m 

(4.1) 

Figure 1. Plot of the lowest energy solution for cp = 12/29 compared with the product of 
the solutions for 0 = 5/12 and 1/2, with the scale altered so that the periods are the same. 
Solutions are normalised so that the maximum value is unity ( x ,  f5,12(12m/29)x 
f1,,(24m/29); 0, f12,zs(m); V = V’=  1.0, E = E ~ ~ ~ ) .  

To show that this result is compatible with the product form of the wavefunction 
given in equation (3.4), despite the small values of the Ni, we have also plotted the 
product fs/12(12m/29)f1,2(24m/29). The two seem to follow the same somewhat 
irregular curve, and there are no substantial discepancies visible. 

Other examples of states which are expected to be self-similar can be found at 
the centre of the band. Here the situation is a little different because the central band 
generally splits up into a different number of components from the other bands. The 
sequence of fractions p n / q n  generated by the recurrence relations 

P n + l =  2Pn + P n - 1 ,  qn+l =%,,+I + P n ,  (4.2) 
with p o  = 0, p1 = 1, each of which has a continued fraction expansion with N I  = 3 and 
all other Ni equal to 2, has the property that the central band splits into three 
components at each stage in the iteration. Figure 2 shows the modulus of the 
wavefunction for zero energy plotted over a half-period for the first five fractions in 
this sequence. Each wavefunction in this sequence looks similar to its predecessor, 
but has more structure of the expected sort than its predecessor. 

We have made two quantitative tests of the scaling of these wavefunctions. With 
the amplitude at the site zero (the phase v is chosen to make the energy of this site 
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0 10 20 30 40 50 
m 

Figure 2. Plot of the modulus of E = O  solutions for p =29/99, 12/41, 5/17, 217, and 
1, 3,  rescaled so that the periods are the same. Solutions are normalised so that the 
maximum value is unity (0, f29/99(m); A, f12/41(41m/99); 0, fs/17(17m/99); V, 
f~/d7m/99);  0, f ldm/33)) .  

zero, so that the wavefunction has its maximum there) fixed as unity, both the 
normalisation per period and the current (of the complex Bloch wave) were calculated. 
The ratio of these two for the same value of cp gives the frequency with which the 
particle tunnels from one unit cell of the periodic system to another, which is propor- 
tional to the width of the energy band. Table 1 shows the results of this calculation, 
together with the ratios between successive members of the sequence. These ratios 
seem to tend rather rapidly to liniits, as they should for this critical case. In the limit 
the normalisation tends to a value proportional to p0.297 and the current to a value 
proportional to p-1.280, so the width of the energy band should be proportional to 
p , where p is the length of the period. These exponents are not expected to 
have any general significance. 

-1.577 

Table 1. Normalisation N ,  per unit cell, current J ,  in units of V/h, and ratios of these for 
a state at the centre of the band for the periodic systems given by equation (4.2). The 
maximum amplitude of the wavefunction is taken to  be unity. The extrapolated limit is 
a guess. 

c p t  Nt J,  NJN,  - I J J  J,  - 1 

113 
217 
5/17 

12/41 
29/99 
701239 

1691577 
limit 

1.5000 0.5000 - 
1.8622 1.6191 x lo-' 1.2415 
2.4628 5.2958 x lo-' 1.3225 
3.1792 1.7042 x lo-' 1.2909 
4.1397 5 . 5 2 5 4 ~  1.3021 
5.3744 1.7865 x 1.2983 
6.9872 5 . 7 8 4 6 ~  1.3001 

1.2995 

0.3238 
0.3271 
0.3218 
0.3242 
0.3233 
0.3238 
0.3235 
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Appendix 

For the case of a linear chain with an equation of the form (l,l), Feenberg (1948) 
perturbation theory is well known to give a particularly simple prescription for the 
elimination of unwanted sites on blocks. This prescription can be derived from first 
principles in the following way. We take the two equations 

where the bi will also depend on E if previous eliminations have been performed, 
and solve j - i  - 1 intervening equations to get c i+ l  and c i - l  in terms of ci and ci in 
the form 

Here D represents a determinant given by the recurrence relations 

for j > k + 1, (A31 
Di,i-l = 1. Since the sites chosen for elimination have a larger 

2 
Dk,j - I = a kD k + 1 ,  j - 1 - b kD k +2. j  - 1 

with Dj- l , j - l  = 
than b, the determinant can be approximated by 

Substitution of (A2) in (Al) gives the renormalised equations 
j - 1  

i 

-bi-lCi-l+(ai(E)-biDi+*,j-l/Di+l,j-l)Ci-( 2 n bk/Di+l, j- l  
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